

Teaching computational and experimental reactor physics using innovative pedagogical methods

NESTet2021

November 15-17, 2021, Brussels, Belgium

<u>C. Demazière</u>, O. Cabellos, N. Garcia-Herranz, S. Dulla, R. Miró, R. Macian, M. Szieberth, E. Buchet, S. Maurice and F. Errecart

Chalmers University of Technology demaz@chalmers.se

- Industry relying more and more on modelling and simulations
- Computational reactor physics often taught via advanced courses
- Advanced courses phased out because of declining student enrolment in "nuclear engineering" at European universities

▶GRE@T-PIONEeR:

- CSA approved for funding by the EC within the 2019-2020 Euratom work program
- 3-year project
- Total budget: 2.6 MEUR, out of which 2.3 MEUR requested from the EC

- GRE@T-PIONEeR consortium:
 - Chalmers University of Technology (Sweden coordinator)
 - Ecole Polytechnique Fédérale de Lausanne (Switzerland)
 - Technical University of Munich and TU Dresden (Germany)
 - Budapest University of Technology and Economics (Hungary)
 - Politecnico di Torino (Italy)
 - Universidad Politénica de Madrid and Universitat Politècnica de València (Spain)
 - The European Nuclear Education Network (Belgium)
 - LGI Consulting (France)

- GRE@T-PIONEeR Advisory Board:
 - Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH GRS (Germany)
 - The Swedish Radiation Safety Authority SSM (Sweden)
 - Nuclear Energy Agency OECD/NEA (France)
- GRE@T-PIONEeR End-User Group:
 - Vattenfall Nuclear Fuel (Sweden)
 - Studsvik Scandpower AB (Sweden)
 - Westinghouse Electric Sweden AB (Sweden)
 - Ringhals AB (Sweden)
 - Forsmark Kraftgrupp AB (Sweden)
 - Kärnkraftsäkerhet och Utbildning AB KSU (Sweden)
 - MVM Paks Nuclear Power Plant Ltd. (Hungary)
 - Institut de Radioprotection et de Sûreté Nucléaire IRSN (France)

- GRE@T-PIONEeR aims:
 - Develop and provide specialized and advanced courses in computational and experimental reactor physics
 - Use innovative pedagogical methods promoting student learning
 - Target: graduate level (MSc and PhD levels) and post-graduate level, as well as nuclear industry staff members

- Plan of presentation:
 - Pedagogical set-up and principles
 - Overview of the courses and hands-on
 - Advancement of the project

Core of the pedagogy = active learning

• In-class sessions offered in a hybrid learning environment:

• In-class sessions offered in a hybrid learning environment:

Interactive teaching room
Chalmers University of Technology, Gothenburg, Sweden

Course elements:

- Handbooks
- Pre-recorded lectures (webcasts)
- On-line quizzes
- Asynchronous interaction tools
- Active learning synchronous sessions

Online

Hybrid

• Course **topics**:

- Nuclear cross-sections for neutron transport
- Neutron transport at the fuel cell and assembly levels
- Core modelling for core design
- Core modelling for transients
- Reactor transients, nuclear safety and uncertainty and sensitivity analysis
- Radiation protection in nuclear environment

- Hands-on exercises:
 - Relying on the use of 3 **training reactors**:

AKR-2 TUD, Dresden, Germany

CROCUS EPFL, Lausanne, Switzerland

BME Training Reactor BME, Budapest, Hungary

- Hands-on exercises:
 - Relying on computer-based modelling and simulations:
 - Either using existing tools (commercial and open-source)
 - Or **implementing algorithms** in computing environments

Previous example of a short course on "Deterministic modelling of nuclear systems", September 9-13, 2019, Chalmers University of Technology

(ESFR-SMART Horizon 2020 project)

- Project running for II months and on schedule
- Development of course materials:
 - Table of contents of all handbooks developed
 - All handbook being written (some already finalized)
 - All hands-on defined

Project implementation:

- Inventory of e-resources available to the partners carried out
- Purchase of a Learning Management System (LMS): Soul (Tecnatom)
- Two recording studios available
- Own screencasting/recording software to be used by each partner
- Two Active Learning Classrooms (ALCs) available
- Heavy use of learning analytics (embedded in the LMS directly)

- Mapping of the stakeholder needs versus course offering and teaching methods carried out
- ➤ Workshop organized on November 18, 2021, in Brussels:
 - Presentation of the results
 - Co-construction of educational programs and courses in nuclear engineering

CONCLUSIONS AND OUTLOOK

CONCLUSIONS AND OUTLOOK

- Project aimed at securing competences on the long term
- Innovative pedagogical methods at the core of the project
- Active learning heavily relying on programming-based, computer-based and research reactor-based hands-on training exercises
- Teachers working together to develop a set of coherent and complementary courses
- Condensed course modules organized along a "story to tell"
- ➤ GRE@T-PIONEeR: pioneering education in computational and experimental reactor physics
- Delivery of the courses planned in late 2022/early 2023

Thank you!

Contact details:

Name: Prof. Christophe Demazière

Email: demaz@chalmers.se

