

GRE@T-PIONEeR

Coordination and Support Action (CSA)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 890675

Start date : 2020-11-01 Duration : 36 Months

Overview of the course package on neutron transport at the fuel cell and assembly levels

Authors : Pr. Sandra DULLA (Polito), Christophe Demazière (Chalmers), Máté Szieberth (BME)

GRE@T-PIONEeR - Contract Number: 890675

Project officer: Ptackova Katerina

Document title	Overview of the course package on neutron transport at the fuel cell and assembly levels
Author(s)	Pr. Sandra DULLA, Christophe Demazière (Chalmers), Máté Szieberth (BME)
Number of pages	18
Document type	Deliverable
Work Package	WP3
Document number	D3.1
Issued by	Polito
Date of completion	2022-09-05 09:46:33
Dissemination level	Public

Summary

This document gives an overview of the course package on Neutron transport at the fuel cell and assembly levels. More precisely, the objectives with the course package, the pedagogical approach used, the course package structure, the overall contents of the developed handbooks and of the hands-on training exercises are presented.

Approval				
Date	Ву			
2022-09-05 09:46:51	Pr. Sandra DULLA (Polito)			
2022-09-05 09:52:24	Pr. Christophe DEMAZIERE (Chalmers)			

Disclaimer

The content of this document reflects only the authors' view. The European Commission is not responsible for any use that may be made of the information it contains.

History

Date	Version	Submitted by	Reviewed by	Comments
April 13 th , 2022	1.0	Christophe Demazière		
July 4 th , 2022	1.1	Sandra Dulla	Christophe Demaziere	

Table of Contents

۱.	Int	Introduction5			
2.	Objectives of the course package				
3.	. Reminder about the pedagogical approach				
	3.1.	Active learning as the core strategy	6		
	3.2.	Flipping to increase pedagogical support	7		
	3.3.	Course package structure	8		
4.	. Overall contents of the developed handbooks II				
5.	Overall contents of the hands-on training exercises				
6.	Conclusions				
7.	References				

Abbreviations and Acronyms

Acronym	Description	
ECTS	European Credit Transfer and Accumulation System	
JITT	Just-in-Time Teaching	
LMS	Learning Management System	
SOUL	Smart Open Universe of Learning	
WP	Work Package	
ELO	Expected Learning Outcome	

Executive Summary

This document gives an overview of the course package on Neutron transport at the fuel cell and assembly levels. More precisely, the objectives with the course package, the pedagogical approach used, the course package structure, the overall contents of the developed handbooks and of the hands-on training exercises are presented.

Keywords

Active learning, blended learning, flipped classroom, hybrid teaching, neutron transport, deterministic methods, Monte Carlo method, fuel cell calculation

I. Introduction

The EU-funded GRE@T-PIONEeR project aims at developing a specialized education in reactor physics and nuclear reactor safety for PhD and postdoc students, for nuclear engineers, and taken as advanced courses for MSc students. The education encompasses both theory and hands-on training exercises, the latter heavily relying on the use of research/training reactors and of computer-based modelling environments. The aim is for the students to be able to perform nuclear reactor safety simulations understanding all the approximations on which such simulations rely. This is considered essential knowledge in the education of highly skilled nuclear safety analysts. The use of pre-recorded lectures and electronic teaching resources allows students to learn at their own pace and get prepared for the hands-on training sessions. Those sessions, offered both on-site and remotely, use active learning methods under the close supervision and support of the teachers, thus promoting student learning.

In this report, an overview of the course package on Neutron transport at the fuel cell and assembly levels offered as part of the Work Package 3 (WP3) is given. More precisely, the objectives with the course package, the pedagogical approach used, the course package structure, the overall contents of the developed handbooks and of the hands-on training exercises are presented.

2. Objectives of the course package

The simulation of the transport of neutrons in nuclear reactors is typically done in two computational stages when using deterministic methods: at the fuel cell and assembly levels, and thereafter at the core level. The aim of the former is to generate energy- and space-averaged macroscopic cross-section data to be subsequently used by the core simulator. Probabilistic (i.e., Monte Carlo) methods can also be used to generate such data. This WP thus aims at developing course materials giving the students a full and comprehensive overview of:

- The principles of probabilistic methods in steady-state conditions for fuel cell and assembly calculations.
- The principles of deterministic methods in steady-state conditions, their approximations, and their range of validity for fuel cell and assembly calculations.
- The use of those methods for macroscopic cross-section generation.

Hands-on training exercises include the development and implementation of some of the deterministic methods and the use of both deterministic and probabilistic tools used by the nuclear industry. Combined with these exercises, research reactors are used for demonstrating methods that allow the determination of transport parameters in multiplying and non-multiplying media.

3. Reminder about the pedagogical approach

This Section is a reminder of the pedagogical approach developed and applied across the GRE@T-PIONEeR project. This approach was already described in more detail in the deliverable D1.2 (Demazière, 2021).

3.1. Active learning as the core strategy

The pedagogical approach used and applied throughout the GRE@T-PIONEeR project essentially relies on the concept of *active learning*, according to which students learn much more efficiently when they participate to engaging activities in the classroom with the support from the teachers (Freeman et al., 2014).

Learning can be considered as a process. One paradigm often used to define the various learning steps is Bloom's revised taxonomy of the cognitive domain (Andersson et al., 2000). This process, illustrated in Figure 1, is defined as a sequence of various skills the students develop, starting from lower-order thinking skills to higher-order thinking skills. In the lower order thinking skills, students try to remember and understand the course concepts they were presented. In the higher order thinking skills, students try to utilize such concepts on their own. Those skills include applying, analysing, evaluating the course concepts and creating. What the various skills represent and contain is more precisely exemplified in Figure 1.

Figure 1. Illustration of Bloom's revised taxonomy for the cognitive domain, with higher order thinking skills at the top of the diagram – adapted from (The Vanderbilt University Center for Teaching, 2021).

In GRE@T-PIONEeR, teachers push the students to develop as high as possible thinking skills. Higher order thinking skills are triggered when students are given the possibility to utilize the concepts they were introduced to. This requires from the teachers designing some engaging activities in which the students are actively involved, during which active learning takes place. The main incentive is the fact that one learns much better by doing and experiencing oneself, a principle called in everyday' s jargon "learning by doing". Practice is the essence in reaching higher order thinking skills in Bloom's revised taxonomy.

Many definitions of active learning exist. The one generally accepted is given by Felder and Brent (2014) as follows: "Active learning is anything course-related that students in a class session are called on to do other than simply watching and listening to a lecture and taking notes."

Many active learning techniques exist. A non-exhaustive list of examples is given in the GRE@T-PIONEeR deliverable D1.1 – Section 7.4 (Jaiyeola A. et al., 2021).

3.2. Flipping to increase pedagogical support

In order to make room for such activities, a flipped classroom is used, with the traditional delivery of lecture-based contents moved outside of the classroom: lecture and materials usually presented in class are instead made available to the students on the web and before (Bishop and Verleger, 2013).

In the flipped classroom model, students learn asynchronously as they can choose when and at what pace to watch/read the course material. In contrast to the traditional teaching format, low order thinking skills are practiced during this asynchronous phase before the students meet the teachers and other students for synchronous interactions. Therefore, the time spent with the teachers can be used more effectively to engage students in high order thinking activities, clarify difficult concepts and provide individual support.

Since the students attend the synchronous sessions much better prepared than in a traditional teaching set-up, flipped classrooms were demonstrated to lead to much better learning outcomes and to contribute to a deeper learning compared to traditional teaching (Bishop and Verleger, 2013; O'Flaherty and Phillips, 2015). The key aspect of flipped classrooms is freeing time in the classroom to organise engaging activities with the students under the teacher's supervision, thus favouring active learning.

Another advantage of the above teaching set-up with respect to synchronous versus asynchronous learning is the possibility for the teachers to gather data about student learning before they meet the students for synchronous interactions. As a result and making use of a Just-in-Time-Teaching (JiTT) philosophy (Watkins and Mazur, 2010), the teachers are able to adjust their synchronous teaching sessions to the students' needs. This further improves student learning.

3.3. Course package structure

The overall methodology for the course implementation relies on the following elements:

- *Handbooks* covering the theoretical aspects of the covered topics.
- *Pre-recorded lectures* (or *webcasts*) available for on-demand viewing and extracting the main features, results, and concepts of the handbooks. The webcasts are recorded with the teacher's voice and, when possible and relevant, video, while using on-screen annotations, thus making the webcasts vivid.
- Online quizzes associated with the webcasts, focusing on conceptual understanding, with immediate feedback to the students on their learning. The quizzes are designed in such a way that thinking skills beyond merely remembering concepts are triggered, including the applying, analysing, and evaluating concepts in Bloom's revised taxonomy. Such active learning elements encourage a deep approach to learning. Moreover, embedding quizzes in the pre-recorded webcasts allows for splitting of the lectures (webcasts) into smaller chunks, increasing student attention and thus improving the conditions for learning. As an additional benefit, the quizzes allow the teachers to continuously monitor students' comprehension of key concepts.
- The possibility to *pose questions* to the teachers while watching the lectures. When possible, students are offered to rate, on a voluntary basis, the pre-recorded lectures and to provide comments. Such comments, at the lecture level, provide meaningful information about student learning and can also be used to improve the design of the handbooks, videos, and quizzes.
- Active learning sessions in forms of wrap-up and tutorials with synchronous interactions between the students and the teachers. Various active learning methods are implemented depending on the topics and the set-up of that particular course moment. Using JiTT, the synchronous sessions are also designed to address the students' needs.
- Use of *discussion fora* monitored by the teachers. The fora are utilised as a post-class activity to maintain engagement, favour collaboration between students and are also used for providing additional feedback and help to the students.

The entire management of all electronic resources is done via the Learning Management System (LMS) SOUL from Tecnatom (Smart Open Universe of Learning).

All the collected information – the answers to the quizzes, the questions sent to the teachers, the rating of the pre-recorded webcasts, as well as additional comments provided by the students – are used to prepare the synchronous sessions designed to meet the students' needs, building on the concept of JiTT. The sessions contain four key parts: 1) providing a brief summary of the key concepts and their relation to the structure of the covered topic so that the students could relate the details to the overall picture, thus favouring a more holistic approach to learning; 2) answering the questions that the teachers received; 3) going through the quizzes in an interactive way and discussing different alternatives; and 4) going through specifically designed activities, exercises, tutorials or hands-on training. This last part of the synchronous sessions constitutes the most important part, both in terms of devoted time and impact on student learning. Moreover, this last part of the wrap-up sessions is where the degree of interaction between the students and teachers is highest.

For each of the studied topics, the learning sequence for the students is made of several parts, as illustrated in Figure 2. The first ones include studying the handbooks, watching the webcasts, and completing the online quizzes. Interactions with the teachers are only possible in an asynchronous fashion, using the communication channels of the LMS. Synchronous interactions become possible during the synchronous sessions. Various active learning techniques are used in such synchronous sessions, representing the course moments during which the students and the teachers interact the most. Finally, the students apply, analyse, and evaluate the studied concepts while solving assignments, thus using high order thinking skills in Bloom's revised taxonomy. Although the biggest part of the assignments is solved during the interactive sessions, the students may be given some extra time to finalize the assignments after the sessions. Discussion fora are also used for peer-instruction, with interventions from the teachers when necessary.

Figure 2. Illustration of the learning sequence.

Hands-on training sessions are split into two categories. The first category typically corresponds to wrapup sessions, discussions, tutorials, code usage and method implementation and are organized separately for each course module. The second category represents hands-on training exercises organized on one of the training reactors available to the consortium (CROCUS at EPFL, Switzerland; AKR-2 at TU Dresden, Germany; BME Training Reactor at BME, Hungary). It should be emphasized that such hands-on exercises are common to all course modules and are organized as a one week to ten days session given after all course modules were given.

The pre-class activities represent roughly one week of full-time studies. Likewise, the in-class activities also represent one week of full-time studies. The course modules are thus worth 3 European Credit Transfer and Accumulation System (ECTS) each. The attendance of the hands-on activities on the training reactors gives some extra ECTS depending on the length of the corresponding sessions.

Moreover, in GRE@T-PIONEeR, the synchronous sessions of the first category are offered in a hybrid learning environment: students can decide to travel to the host organisation for following the synchronous sessions, or they can follow such sessions remotely on the web. The synchronous sessions

are organised in specifically designed interactive teaching rooms: one available at Chalmers University of Technology, Sweden (Demazière et al., 2017) and one at Universitat Politècnica de València, Spain. Such rooms are furnished with movable chairs, tables, and whiteboards enabling the use of a more student-centred pedagogical approach. This is of significance when a flipped classroom model is implemented, so that the in-class activities can focus on higher order thinking skills. In addition, the rooms are equipped with audio and video hardware and software that allow synchronous interactions between the on-site and off-site participants in form of digital content sharing, audio interactions, and video communication.

WP	Course module	Week number/year	Location
2	Nuclear data for	46/2022	UPV, Spain
	energy and nonenergy	(November 14-18, 2022)	(+ possible remote
	applications		attendance)
3	Neutron transport at	50/2022	CHALMERS, Sweden
	the fuel cell and	(December 12-16, 2022)	(+ possible remote
	assembly levels		attendance)
4	Core modelling for	2/2023	UPV, Spain
	core design	(January 9-13, 2023)	(+ possible remote
			attendance)
5	Core modelling for	6/2023	UPV, Spain
	transients	(February 6-10, 2023)	(+ possible remote
			attendance)
6	Reactor transients,	10/2023	UPV, Spain
	nuclear safety and	(March 6-12, 2023)	(+ possible remote
	uncertainty and		attendance)
	sensitivity analysis		
7	Radiation protection in	13/2023	CHALMERS, Sweden
	nuclear environment	(March 27-31, 2023)	(+ possible remote
			attendance)
2-7	Exercises at AKR-2	April 2023	TUD, Germany
		(+ backup in	(only some of the course
		August/September 2023)	elements will be made
			available to remote
			attendees)
2-7	Exercises at CROCUS	End of May/beginning of	EPFL, Switzerland
		June 2023	(only some of the course
		(+ backup in September	elements will be made
		2023)	available to remote
			attendees)
2-7	Exercises at BME	June 2023	BME, Hungary
	Training Reactor	(+ backup in	(only some of the course
		August/September 2023)	elements will be made
			available to remote
			attendees)

Table 1. Summary of the synchronous hands-on training sessions.

Such teaching rooms allow for courses to be offered to remote students in a pure virtual learning environment without any need to travel. The rooms make offering the synchronous sessions to both the on-site and off-site attendees possible. Furthermore, the two audiences can interact with each other.

The planning of the different hands-on sessions is summarized in Table 1.

4. Overall contents of the developed handbooks

The handbook on neutron transport at the fuel cell and assembly level is composed by 6 chapters, covering the topic from the definition of the problem under consideration to the details related to the numerical solution of the transport equation and its usefulness in the global picture of reactor core analysis. The handbook amounts to a total of 120 pages.

We here report the Table of content of the handbook with a brief description of the content, based on the abstract of each chapter, as provided in the handbook.

1.	INTRODUC	CTION	1
	1.1 Elementary concepts in neutron physics		1
	1.2 Formulation of the neutron transport equation		5
	1.2.a	Integro-differential form	5
	1.2.b	Integral form	8
	1.2.c	Characteristic form	9
Ref	ferences		10

In this first chapter, the elementary concepts necessary to derive a balance equation describing the behavior of neutrons in a nuclear reactor are introduced. Thereafter, various forms of the balance equation are presented. This chapter has for primary objective to define the different quantities appearing in neutron transport and to provide background information to the readers not familiar with neutron transport.

2.	ANALYTICA	AL SOLUTIONS OF THE NEUTRON TRANSPORT EQUATION	11
	2.1 The mo	onokinetic transport model in one-dimensional slab geometry	11
	2.2 The solution of the transport model in one-dimensional slab geometry with the Fouri		
			13
	2.2.a	The transport kernel in the Fourier-transformed space	14
	2.2.b	The inversion of the Fourier-transformed scalar flux	15
	2.2.c	The polar singularity contribution	18
	2.2.d	The essential singularity contribution	20
	2.2.e	Asymptotic and transient part of the transport solution	20
	2.3 The so	lution in the Fourier-transformed space and Case's method	21
Ref	erences		24

The chapter on the analytical approach to the solution of the transport equation deals with one of the simplest forms of this balance model, i.e., planar geometry in the infinite medium with a monokinetic approach. This formulation allows for an analytical solution, based on the use of the Fourier Transform, allowing to infer various physical properties of the transport model and providing a context of application of the diffusion approximation. The equivalence to the singular eigenfunction approach developed by Kenneth Case is also sketched.

3.	OVERVIEW OF MODELLING STRATEGIES	25
	3.1 Introduction	25
	3.2 Deterministic modelling	26
	3.3 Monte Carlo modelling	31
Re	ferences	32

The third chapter provides an introduction to the techniques used for modelling nuclear reactor systems. All the various numerical approaches can be categorized under two broad definitions: the deterministic approach and the Monte Carlo approach. The main purpose of this chapter is to give a general, broad overview of the principles at the basis of these approaches. The details of the techniques are then presented in subsequent chapters.

4.	REPRESENTATION OF THE ENERGY DEPENDENCE	33
	4.1 Nuclear data libraries	33
	4.2 Multi-group formalism	34
Re	ferences	38

As nuclear reactions are at the core of the physical processes taking place in nuclear reactors, this chapter describes the nuclear data libraries and the various ways of representing the energy dependence of the microscopic cross-sections. Whereas those data are dependent on the energy of the incoming and possibly outgoing particles in a continuous manner, deterministic modelling approaches are based on the averaging of the data on energy intervals, often referred to as a multigroup formalism. The corresponding averaging process is given special attention in this chapter.

5.	DETERMIN	IISTIC MODELLING	39
	5.1 Treatn	nent of resonances	39
	5.1.a	Introduction	39
	5.1.b	Equivalence method	40
	5.1.c	Subgroup method	49
	5.2 Resolv	ing the energy dependence	51
5.3 One-dimensional micro-group pin cell calculations			55
	5.3.a	Introduction	55
	5.3.b	Transport correction	56
	5.3.c	Method of collision probabilities	57
	5.4 Two-d	imensional macro-group lattice calculations	62

5.4.a	Introduction	62
5.4.b	Method of characteristics	63
5.4.c	Discrete ordinates (S_N) method	64
5.4.d	Interface current method	69
5.4.e	Acceleration methods	73
5.5 Critica	ality spectrum calculations	75
5.5.a	Introduction	75
5.5.b	Homogeneous B1 method	75
5.5.c	Homogeneous P1 method	78
5.5.d	Fundamental mode method	78
5.6 Cross	-section homogenization and condensation	79
5.7 Deple	tion calculations	82
5.8 Cross	-section preparation for core calculations	87
5.9 Summ	nary of the overall methodology	92
References		95

This chapter describes the different steps in the deterministic modelling of neutron transport at the fuel lattice level. The purpose of those is to prepare macroscopic cross-section data and kinetic data in an energy representation and spatial discretization compatible with the ones subsequently used for core calculations. Through a multi-stage procedure starting with a treatment of resonances, the results of micro-group/micro-region and of macro-group/macro-region calculations are combined to provide a first estimate of the spatial and energy distribution of the neutron flux at the fuel assembly level, then used for the energy condensation and the spatial homogenization. The preparation of the data for the core simulator is also given special attention, taking into account the effect of instantaneous and history variables (e.g., burnup, control operations, ...).

6.	MONTE CARLO METHODS		96
	6.1 Solving	g integrals and integral equations	96
	6.1.a	Monte Carlo estimation of integrals	96
	6.1.b	Evaluation of integral operators with Monte Carlo	99
	6.1.c	Solution of integral equations with Monte Carlo	101
	6.2 Solutio	104	
	6.2.a	Collision and emission density formalism	105
	6.2.b	Expansion into Neumann-series	108
	6.2.c	Monte Carlo game to solve the transport equation	109
	6.2.d	Analogous and non-analogous Monte Carlo	111
	6.3 Monte	112	
	6.3.a	Response functions	112
	6.3.b	Estimation of the response	113
	6.3.c	Detector functions	113
	6.3.d	Flux estimators	114
Ref	ferences		118

Monte Carlo methods are based on sampling probability distributions with the help of quasi random numbers. When applied for particle transport it is often considered as the simulation of random physical processes with known distributions. This approach is called analogous Monte Carlo. However, in a more general view the Monte Carlo methods are numerical methods which are used predominantly for the determination integrals involving probability distributions. As such it can also be used for the solution of integral equations, like the one describing particle transport processes. This chapter of the book introduces this more theoretical, non-analogous approach to Monte Carlo methods, presenting the concept of integration and solution of integral equation, the Monte Carlo game to solve the Boltzmann transport equation and the estimators for the particle flux and related quantities.

Conclusions

119

The conclusion section summarized the content of the handbook, highlighting the expected learning outcomes that are expected to be achieved by the students when completing their study of this text.

5. Overall contents of the hands-on training exercises

As earlier mentioned, the hands-on training exercises are divided into a one-week long set of synchronous session specific to the considered WP and three sets of hands-on activities common to all WP and offered at each of the training reactors – see Section 3.3 and Table 1.

The details of the WP-specific hands-on exercises during the synchronous sessions are detailed in Table 2, whereas the planning of the activities is given in Table 3.

Exercise	Responsible organizatio n/person	Format	Background knowledge	Restrictions
Method of collision probabilities in multi-group formalism + inner/outer iterations	CHALMERS/ Christophe Demazière	Hybrid Using MATLAB Grader	Provided in the T3.1 handbook	Max. 15-20 onsite participants Max. 25-30 offsite participants
Use of deterministic code	CHALMERS/ Christophe Demazière	Hybrid Using CASMO	Provided in the T3.1 handbook	Max. 15-20 onsite participants Max. 25-30 offsite participants
Use of Monte Carlo code	BME/Máté Szieberth	Hybrid Using OpenMC (+emphasize cross-sections generation for deterministic codes)	Provided in the T3.1 handbook	Max. 15-20 onsite participants Max. 25-30 offsite participants

Table 2. Description	of the hands-on exer	cises offered during the	e WP-specific synchronous	s sessions.
----------------------	----------------------	--------------------------	---------------------------	-------------

Day 1							
Time	Activity	Teacher					
09:00-10:00	Start of the course: introduction of the teachers	All					
	and participants, schedule for the week						
10:00-12:00	Deterministic modelling: interactive discussions	C. Demazière					
	on overall strategy + pin cell calculations						
13:00-16:00	Analytical solution to the neutron transport	S. Dulla					
	equation: interactive discussions						
	Day 2						
Time	Activity	Teacher					
9:00-12:00	Analytical solution to the neutron transport	S. Dulla					
	equation: hands-on						
13:00-16:00	Method implementation: development of a	C. Demazière					
	collision probability module - Part I: derivation						
	of the equations + numerical estimation of the						
	probabilities						
	Day 3						
Time	Activity	Teacher					
09:00-12:00	Deterministic modelling: interactive discussions	C. Demazière					
	on assembly calculations + data preparation for						
	core calculations						
13:00-16:00	Method implementation: development of a	C. Demazière					
	collision probability module - Part II: numerical						
	Day 4	-					
Time	Activity	Teacher					
9:00-12:00	Use of deterministic code: fuel assembly	C. Demazière					
	modelling using CASMO-4						
13:00-16:00	Monte Carlo modelling: interactive discussions	M. Szieberth					
	Day 5						
Time	Activity	Teacher					
9:00-12:00	Use of Monte Carlo code: fuel assembly	M. Szieberth					
	modelling using OpenMC						
13:00-15:00	Use of Monte Carlo code: case study on the	M. Szieberth					
	BME Training Reactor using OpenMC						
15:00-16:00	Closing of the course: course certificates and	All					
	course evaluation						

Table 3. Planning of the various activities during the WP-specific synchronous sessions.

The details of the hands-on exercises on the training reactors are given in Table 4.

Table 4. Description of the hands-on exercises offered during the hands-on exercises on the trainingreactors.

Exercise	Responsible organization/per son	Format	Background knowledge	Restrictions
Estimation of the neutron spectrum by activation of samples with well-known XS in certain energy regions at AKR-2	TUD/Carsten Lange and Alexander Knospe	3 h to one day Onsite Possibility of hybrid format (audio/video sharing)	Dedicated set of lecture notes provided	Max. 8 onsite participants
Time-of-flight measurements at AKR-2	TUD/Carsten Lange and Alexander Knospe	3 h to one day Onsite Possibility of hybrid format (audio/video sharing)	Dedicated set of lecture notes provided	Max. 8 onsite participants
Spectral indices with foils and/or fission chambers at CROCUS	EPFL/Alessandro Scolaro, Vincent Lamirand and Mathieu Hursin	4 h Onsite Possibility of hybrid format (audio/video sharing + remote control of acquisition systems)	Basics in reactor physics and radiation matter interaction	Max. 4-6 onsite participants
Measurements of diffusion length, absorption XS/migration area (CARROUSEL) at CROCUS	EPFL/Alessandro Scolaro, Vincent Lamirand and Mathieu Hursin	4 h Onsite Possibility of hybrid format (audio/video sharing + remote control of acquisition systems)	Basics in reactor physics and radiation matter interaction	Max. 4-6 onsite participants
Irradiation for spectral indices at the BME Training Reactor	BME/Mate Szieberth	4-6 h for measurements and 4-6 hours for evaluations (morning/afterno on) Onsite Possibility of hybrid format (audio/video sharing) for the evaluation	Dedicated set of lecture notes provided	4-5 participants/ group with max. 2 groups in parallel Radiation protection briefing required before entire the first time

		sessions + pre-		
		recording of		
		measurements		
Measurement of diffusion	BME/Mate	4-6 h for	Dedicated	4-5
length in graphite thermal	Szieberth	measurements	set of lecture	participants/
column at the BME Training		and 4-6 hours for	notes	group with
Reactor		evaluations	provided	max. 2
		(morning/afterno		groups in
		on)		parallel
		Onsite		Radiation
		Possibility of		protection
		hybrid format		briefing
		(audio/video		required
		sharing) for the		before entire
		evaluation		the first time
		sessions + pre-		
		recording of		
		measurements		

The hands-on training sessions organized by the technical teams at the experimental facilities allow the students to gain direct experience on the analysis of measurements, with a specific focus on the quantities that characterize the behaviour of a nuclear reactor core, such as the spectral index. As the exercises are carried out in different facilities, the comparison of the obtained results is also helping the students to understand how the core composition and layout influence the relevant neutronic parameters.

6. Conclusions

As demonstrated in this report, the handbook on neutron transport at the fuel cell and assembly level was developed as a collective effort between different teachers and is already available. Likewise, the planning and content of the corresponding synchronous sessions were established. Beyond the development of such sessions, the coming months will also be devoted to the development of the webcasts, quizzes and on the structuring of all electronic resources on the LMS.

7. References

Anderson L.W., Krathwohl D.R., Airasian P.W., Cruikshank K.A., Mayer R.E., Pintrich P.R., Raths J. and Wittrock M.C., A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives, Pearson, Allyn & Bacon (2000).

Jaiyeola A., Erim S., Balech S., and Stöhr C., Mapping analysis. GRE@T-PIONEeR deliverable D1.1 (2021).

Bishop J. L. and Verleger M. A., The flipped classroom: A survey of the research, ASEE National Conference Proceedings, Atlanta, GA, USA, 30 (9) (2013).

Demazière C., Operative structure. GRE@T-PIONEeR deviverable D1.2 (2021).

Demazière C., Apell P., Stöhr C. and Adawi T., Setting up a room to cater to online learners' needs, Proc. Conf. Nuclear Training and Education (CONTE 2017), Jacksonville, FL, USA, February 5-8, 2017 (2017).

Felder R. M. and Brent R., Teaching and learning STEM: A Practical Guide. John Wiley & Sons, Incorporated (2016).

Freeman S., Eddy S.L., McDonough M., Smith M.K., Okoroafor N., Jordt H. and Wenderoth M.P., Active learning increases student performance in science, engineering, and mathematics, Proceedings of the National Academy of Sciences of the United States of America, 111 (23), pp. 8410-8415 (2014).

O'Flaherty J. and Phillips C., The use of flipped classrooms in higher education: A scoping review, The Internet and Higher Education, 25, pp. 85-95 (2015).

The Vanderbilt University Center for Teaching, "Bloom's taxonomy", available online. URL https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/ (2021).

Watkins J. and Mazur E., Just-in-time teaching and peer instruction, In Simkins S. and Maier M. (eds.), Just-in-time teaching: Across the disciplines, and across the academy, Stylus Publishing, Sterlin, VA, USA (2010).

